* Progress Towards a Climate Adaptation Plan at LACMTA

Cris B. Liban, D.Env., P.E. Los Angeles County Metropolitan Transportation Authority

FTA Transit Climate Change Adaptation Webinar August 8, 2011

*Climate Planning Drivers in California

*AB 32: Reduce state's global warming emissions be reduced to 1990 levels by the year 2020

*SB 375: Coordinated land use and transportation planning as a means to address climate change

*2009 California Climate Adaptation Strategy

*Amendments to the California Environmental Quality Act Guidelines Section 15126.2

*Overview of Potential Climate Change Impacts in CA

*Why is LACMTA thinking about climate?

What's happening?	How climate information might help.
Service disruptions occur <u>now</u> during periods of extreme heat and heavy precipitation.	Identifying portions of the transit system/particular services that are most vulnerable can help guide planning and operations.
Large infrastructure projects (Measure R) are in progress and being planned. Ensuring their performance and safety is critical, in both the current and future climate.	Information about impacts and adaptation can be incorporated into decisions about mode selection, siting, alternatives, and materials.

* Goal of the Adaptation Plan

We know that climate-related risk exists.

We need to understand:

- the nature and magnitude of the risk
- the planning and operational options for reducing risk
- the relative costs and benefits of the options

Metro

*Methodology

Screening approach designed to identify major vulnerabilities and then identify/evaluate options

- *Identify Critical Assets and Services
- *Analyze Historical Climate and Projected Future Climate
- *Identify Vulnerability to Impacts
- *Evaluate Potential Adaptation Options

1. Critical Assets/Services 2. Climate Information 3. Vulnerability 4. Adaptation Option

The LACMTA's Service Area is <u>GEOGRAPHICALLY LARGE</u> [1,433 mi² (3,711 km²)]

Multi-modal

- heavy and light rail
- bus
- BRT

Over 1 million daily bus boardings and approximately 300,000 daily rail boardings

Critical Assets/Services 2. Climate Information 3. Vulnerability 4. Adaptation Options

1. Critical Assets/Services 2. Climate Information 3. Vulnerability 4. Adaptation Option

*What's critical?

Critical = services and assets that are essential to transporting LACMTA's customers

i.e., "If this service or asset were removed from the transit system, would the transit system be fundamentally different?"

- *Limited to transit assets and services owned and operated by LACMTA
- *Future transit projects under Measure R

Critical Assets/Services 2. Climate Information 3. Vulnerability 4. Adaptation Options

*Criticality Results

- *Preliminary analysis focused at the service level
 - *Bus operations (mainly the fleet; includes BRT)
 - *Light and heavy rail operations (includes fleet, railways, stations, and support facilities)
 - * Measure R transit projects

- *Framework outlined for determining criticality among stations/locations
 - * Based on ridership, connectivity within system, presence of development projects, and staff input

* Observed Climate Change in Southern California

- *Region has experienced warming in the 20th century across all seasons (~2°F) comparing last 30 years to earlier decades
- *Frequency of extremely warm days has increased
- *Precipitation changes not statistically significant, far less than large year to year variability

Frequency of Hot Summer Days, Pasadena

Green 1980-2009

Red 1910-2009

Blue 1910-1979 (solid is for days reaching low 90's°F; filled is for days reaching 100°F)

*Future Climate

*Projected warming of 2-6°F by 2050 3-10°F by 2100

High end of range make future springs and falls at least as warm as current summers.

- * Precipitation changes vary by model; majority show slight overall drying.
- * Large year-to-year variability (including chance of heavy rainfall events) expected to continue into the future.

Despite being a "dry" place on average, LA has experienced episodes of 10-12" of rain within 5 days and winters with more precipitation than Seattle receives in an average year (~40")!

* Impacts and Key Risks - Driven by Extreme Heat and Precipitation Events

Service/Asset	Climate Impact
	Equipment malfunction (electrical systems; air conditioning systems) during periods of extreme heat
Rail Operations	Railway buckling during periods of extreme heat
	Flooding of underground stations and tracks, at-grade railways, and Bus Rapid Transit right-of-ways during heavy rainfall events
Bus Operations	Fleet breakdowns and increased maintenance during periods of extreme heat
New Construction/ Measure R Projects	Exposing new infrastructure to episodes of extreme heat and heavy rainfall events
	Labor interruptions or delays during periods of extreme heat
N A STATE	13

*Adaptation Options to Consider...

- *Combining weather/climate information with infrastructure monitoring and maintenance?
- *Exploring the use of more heat-resistant track materials?
- *Improving "flood defense" at sensitive locations (like underground stations)?

Examples: expanded "greener" stormwater management; changes to vents, or elevation of pumps

*Options during construction?

Examples: siting, alignment alternatives, labor schedules

*How to evaluate and pursue options?

Still a work in progress!

- * How can the costs of adaptive actions (or lack of action) be estimated?
- * How can adaptation be made iterative?
- i.e., How can we monitor the impact of weather events, learn something, and update/adjust operations and planning...
- * How to integrate adaptation into management/planning?
- i.e., What are we already doing that could be considered adaptation? How might adaptation help us achieve existing management goals?

*Questions/Discussions

For additional information: www.metro.net/sustainability 213/922-1100

Cris B. Liban, D.Env., P.E.

p: 213/922-2471

e/m: LibanE@metro.net

